Best proximity pair theorems for relatively nonexpansive mappings
نویسندگان
چکیده
منابع مشابه
Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces
This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$
متن کاملbest proximity pair and coincidence point theorems for nonexpansive set-valued maps in hilbert spaces
this paper is concerned with the best proximity pair problem in hilbert spaces. given two subsets $a$ and $b$ of a hilbert space $h$ and the set-valued maps $f:a o 2^ b$ and $g:a_0 o 2^{a_0}$, where $a_0={xin a: |x-y|=d(a,b)~~~mbox{for some}~~~ yin b}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in a$ such that $$d(g(x_0),f(x_0))=d(a,b).$$
متن کاملNew Best Proximity Point Theorems for a Pair of Nonlinear Non-self Mappings in Metric Spaces
In this paper, we establish new convergence theorems and best proximity point theorems for a pair of nonlinear non-self mappings in metric spaces. Mathematics Subject Classification: 41A17, 41A65
متن کاملBest Proximity Pair Theorems for Noncyclic Mappings in Banach and Metric Spaces
Let A and B be two nonempty subsets of a metric space X. A mapping T : A∪B → A∪B is said to be noncyclic if T (A) ⊆ A and T (B) ⊆ B. For such a mapping, a pair (x, y) ∈ A×B such that Tx = x, Ty = y and d(x, y) = dist(A,B) is called a best proximity pair. In this paper we give some best proximity pair results for noncyclic mappings under certain contractive conditions.
متن کاملOn Best Proximity Pair Theorems and Fixed-point Theorems
The significance of fixed-point theory stems from the fact that it furnishes a unified approach and constitutes an important tool in solving equations which are not necessarily linear. On the other hand, if the fixed-point equation Tx = x does not possess a solution, it is contemplated to resolve a problem of finding an element x such that x is in proximity to Tx in some sense. Best proximity p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied General Topology
سال: 2009
ISSN: 1989-4147,1576-9402
DOI: 10.4995/agt.2009.1784